The incredible potentialities of ionized-energized water

Water, The chemistry of life.
Whenever we attempt to determine whether there is life as we know it on Mars or other planets, scientists first seek to establish whether or not water is present. Why? Because life on earth totally depends on water. A High percentage of living things, both plant and animal are found in water. All life on earth is thought to have arisen from water. The bodies of all living organisms are composed largely of water. About 70 to 90 percent of all organic matter is water.

Water, the universal solvent
Water is a universal, superb solvent due to the marked polarity of the water molecule and its tendency to form hydrogen bonds with other molecules. One water molecule, expressed with the chemical symbol H2O, consists of 2 hydrogen atoms and 1 oxygen atom.
Standing alone, the hydrogen atom contains one positive proton at its core with one negative electron revolving around it in a three-dimensional shell. Oxygen, on the other hand, contains 8 protons in its nucleus with 8 electrons revolving around it. This is often shown in chemical notation as the letter O surrounded by eight dots representing 4 sets of paired electrons. The single hydrogen electron and the 8 electrons of oxygen are the key to the chemistry of life because this is where hydrogen and oxygen atoms combine to form a water molecule, or split to form ions.
Hydrogen tends to ionize by losing its single electron and form single H+ ions, which are simply isolated protons since the hydrogen atom contains no neutrons. A hydrogen bond occurs when the electron of a single hydrogen atom is shared with another electronegative atom such as oxygen that lacks an electron.
Polarity of water molecules
In a water molecule, two hydrogen atoms are covalently bonded to the oxygen atom. But because the oxygen atom is larger than the hydrogen’s, its attraction for the hydrogen’s electrons is correspondingly greater so the electrons are drawn closer into the shell of the larger oxygen atom and away from the hydrogen shells. This means that although the water molecule as a whole is stable, the greater mass of the oxygen nucleus tends to draw in all the electrons in the molecule including the shared hydrogen electrons giving the oxygen portion of the molecule a slight electronegative charge.
Oxidation-reduction reactions
Basically, reduction means the addition of an electron (e-), and its converse, oxidation means the removal of an electron. The addition of an electron, reduction, stores energy in the reduced compound. The removal of an electron, oxidation, liberates energy from the oxidized compound. Whenever one substance is reduced, another is oxidized.
Acids and Bases
An acid is a substance that increases the concentration of hydrogen ions (H+) in water. A base is a substance that decreases the concentration of hydrogen ions, in other words, increasing the concentration of hydroxide ions OH-.
The degree of acidity or alkalinity of a solution is measured in terms of a value known as pH, which is the negative logarithm of the concentration of hydrogen ions: pH = 1/log[H+] = -log[H+].
Importance of balancing pH
Living things are extremely sensitive to pH and function best (with certain exceptions, such as certain portions of the digestive tract) when solutions are nearly neutral. Most interior living matter (excluding the cell nucleus) has a pH of about 6.8.
Blood plasma and other fluids that surround the cells in the body have a pH of 7.2 to 7.3. Numerous special mechanisms aid in stabilizing these fluids so that cells will not be subject to appreciable fluctuations in pH. Substances which serve as mechanisms to stabilize pH are called buffers. Buffers have the capacity to bond ions and remove them from solution whenever their concentration begins to rise. Conversely, buffers can release ions whenever their concentration begins to fall. Buffers thus help to minimize the fluctuations in pH. This is an important function because many biochemical reactions normally occurring in living organisms either release or use up ions.
Oxygen: Too much of a good thing?
Oxygen is essential to survival. It is relatively stable in the air, but when too much is absorbed into the body it can become active and unstable and has a tendency to attach itself to any biological molecule, including molecules of healthy cells. The chemical activity of these free radicals is due to one or more pairs of unpaired electrons.
About 2 % of the oxygen we normally breathe becomes active oxygen, and this amount increases to approximately 20 % with aerobic exercise.
Such free radicals with unpaired electrons are unstable and have a high oxidation potential, which means they are capable of stealing electrons from other cells. This chemical mechanism is very useful in disinfectants such as hydrogen peroxide and ozone which can be used to sterilize wounds or medical instruments. Inside the body these free radicals are of great benefit due to their ability to attack and eliminate bacteria, viruses and other waste products. Active Oxygen in the body problems arise, however, when too many of these free radicals are turned loose in the body where they can also damage normal tissue.
Antioxidants block dangerous oxidation
One way to protect healthy tissue from the ravages of oxidation caused by active oxygen is to provide free electrons to active oxygen radicals, thus neutralizing their high oxidation potential and preventing them from reacting with healthy tissue.
Research on the link between diet and cancer is far from complete, but some evidence indicates that what we eat may affect our susceptibility to cancer. Some foods seem to help defend against cancer, others appear to promote it.
Much of the damage caused by carcinogenic substances in food may come about because of an oxidation reaction in the cell. In this process, an oddball oxygen molecule may damage the genetic code of the cell. Some researchers believe that substances that prevent oxidation – called ANTIOXIDANTS – can block the damage. This leads naturally to the theory that the intake of natural antioxidants could be an important aspect of the body’s defense against cancer. Substances that some believe inhibit cancer include vitamin C, vitamin E, beta-carotene, selenium, and gluthione (an amino acid). These substances are reducing agents. They supply electrons to free radicals and block the interaction of the free radical with normal tissue.
Water the natural solution: іonized and energized water
There is no substitute for a healthy balanced diet, especially rich in antioxidant materials such as vitamin C, vitamin E, beta-carotene, and other foods that are good for us. However, these substances are not the best source of free electrons that can block the oxidation of healthy tissue by active oxygen.
Water treated by electrolysis and energize to increase its reduction potential is the best solution to the problem of providing a safe source of free electrons to block the oxidation of normal tissue by free oxygen radicals. We believe that reduced water, water with an excess of free electrons to donate to active oxygen, is the best solution because:
The reduction potential of water can be dramatically increased over other antioxidants in food or vitamin supplements.
The molecule weight of reduced water is low, making it fast acting and able to reach all tissues of the body in a very short time.
Ionized water is the product of mild electrolysis which takes place in the ionized water unit. The production of ionized water, its properties, and how it works in the human body are described in the next section. Ionized water is treated tap water that has not only been filtered, but has also been reformed in that it provides reduced water with a large mass of electrons that can be donated to active oxygen in the body to block the oxidation of normal cells.
Redox potential, not pH, is the crucial factor
Traditionally we have judged the properties of water from the standpoint of pH, in other words whether water is acidic or alkaline. According to Dr. Yoshiaki Matsuo PhD., the inventor of the Ionized Water unit, "In my opinion, redox potential is more important than pH. The importance of pH is over emphasized. For example, the average pH of blood is 7.4 and acidosis or alkalosis are defined according to deviation within the range of 7.4 +/– 0.005. But nothing has been discussed about ORP, or oxidation-reduction potential."
The pH of tap water is about pH 7, or neutral. When tap water is electrolyzed into Ionized Water, its reduced water has a pH of about 9 and the oxidized water a pH of about 4. Even if you make alkaline water of pH 9 by adding sodium hydroxide or make acidic water of pH 3 by adding hydrogen chloride, you will find very little change in the ORP values of the two waters. On the other hand, when you divide tap water with electrolysis you can see the ORP fluctuate by as much as +- 1,000 mV. By electrolysis we can obtain reduced water with negative potential that is good for the body.
Perhaps the most significant discovery within the past 30 years is that water has quantum properties under ambient conditions, and may even be quantum coherent, as revealed by nuclear magnetic resonance measurements. However, neither classical nor standard quantum theory predicts quantum coherence for water, largely because they ignore quantum fluctuations and the interaction between matter and electromagnetic field, which are taken into account in a quantum electrodynamics (QED) field theory.
Quantum fluctuations and coupling between matter and electromagnetic field in QED indeed predicts quantum coherence for liquid water even under ordinary temperatures and pressures, according to Emilio Del Giudice and his colleagues at Milan University, who have been researching this problem since the 1990s. Their theory suggests that interaction between the vacuum electromagnetic field and liquid water induces the formation of large, stable coherent domains (CDs) of about 100 nm in diameter at ambient conditions, and these CDs may be responsible for all the special properties of water including life itself.
More than 50 years ago, Szent-Gyorgyi suggested that water at interfaces was the key. He proposed that water in living organisms existed in two states: the ground state and the excited state, and that water at interfaces such as membranes existed in the excited state, which requires considerably lower energy to split.  This property of water enables energy transfer to take place in living organisms ensuring long-lasting electronic excitations. Szent-Gyorgyi’s ideas were largely ignored by the scientific mainstream that became obsessed instead with molecular genetics.
Del Giudice and colleagues suggest that  water is in fact a giant coherence domain stabilized on the surface of the attractive gel. Because coherent water is excited water with a plasma of almost free electrons, it can easily transfer electrons to molecules on its surface AND BECOME ENERGIZED. The interface between fully coherent interfacial water and normal bulk water becomes a “redox pile”. In line with this proposal,  water does indeed act as a battery, as  Liquid Crystalline MACRO CLUSTER.
Del Giudice and colleagues also argue that water CDs can be easily excited, and are able to collect small external excitations to produce single coherent vortices whose energy is the sum of all the small excitation energies, turning the originally high entropy energy into low entropy coherent energy, which is trapped stably in the water CDs. This coherent energy in turn enables selective coherent energy transfer to take place as follows. All molecules have their own spectrum of vibrational frequencies. If the molecule’s spectrum contain a frequency matching that of the water CD, it would get attracted to the CD, and become a guest participant in the CD’s coherent oscillation, and settle on the CD’s surface. Furthermore, the CD’s excitation energy would become available to the guest molecules as activation energy for chemical reactions to take place. This selectivity may be the reason why out of a hundred different amino acids only 20 have been selected for making proteins in living organisms.
When taken internally, the reduced Ionized energized Water with its redox potential of -250 to -350 mV readily donates its electrons to oddball oxygen radicals and blocks the interaction of the active oxygen with normal molecules.
A biological molecule (BM) remains intact and undamaged.
Undamaged biological molecules are less susceptible to infection and disease. Ionized Water gives up an extra electron and reduces the active oxygen (AO), thus rendering it harmless. The AO is reduced without damaging surrounding biological molecules. Substances which have the ability to counteract active oxygen by supplying electrons are called scavengers. Reduced water, therefore, can be called scavenging water.
When taken internally, the effects of reduced water are immediate. Ionized ENERGIZED Water inhibits excessive fermentation in the digestive tract by reducing indirectly metabolites such as hydrogen sulfide, ammonia, histamines, indoles, phenols and scatoles, resulting in a cleaner stool within days after reduced water is taken on a regular basis.
In 1965, the Ministry of Welfare of Japan announced that reduced water obtained from electrolysis can prevent abnormal fermentation of intestinal microbes іonized ENERGIZED Water superior to antioxidant diet.
Today we read much about correct dieting principles and paying attention to what we eat in order to stay healthy. This is a sensible practice, but it is surprising that many of us don’t realize that the bulk of what eat is composed of water. Vegetables and fruits are 90 % water; fish and meat are about 70 % water as well.
Even advocates of the importance of vitamin C in diet staples have to admit that its potency, namely, the redox potential of this important vitamin, rapidly diminishes with age and preparation for the dining table. Carbohydrates, the main consistent of vegetables and fruit, has a molecular weight of 180 whereas water has a much lower molecular weight of 18. Ionized Water, with its low molecular weight and high reduction potential, makes it a superior scavenging agent of active oxygen. But electrolysis inside the Ionized Water unit not only charges the reduced water with electrons, it also reduces the size of reduced water molecule clusters.
NMR (Nuclear Magnetic Resonance) analysis reveals that tap water and well water consists of clusters of 10 to 13 H2О molecules. Electrolysis of water in the Ionized ENERGIZED Water unit reduces these clusters to about half their normal size – 5 to 6 water molecules per cluster.
As the graph shows, the NMR signal that measures cluster size by line width at half-amplitude shows 65 Hz for reduced water and 133 Hz for tap water, revealing that the reduced water clusters are approximately half the size of tap water clusters. This is why Ionized Water is more readily absorbed by the body than untreated tap water. Ionized Water quickly permeates the body and blocks the oxidation of biological molecules by donating its abundant electrons to active oxygen, enabling biological molecules to replace themselves naturally without damage caused by oxidation that can cause diseases.

The incredible potentialities of ionized-energized water [Електронний ресурс]  / [Carlo Cortella] // Режим доступу:

No votes yet